Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Ann Neurol ; 95(2): 325-337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37787451

ABSTRACT

OBJECTIVE: Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases, including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study, we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. METHODS: A total of 95,000 base pairs spanning 1q22, including SEMA4A, SLC25A44, and PMF1/PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and Rare Variant Influential Filtering Tool analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, chromatin immunoprecipitation followed by sequencing, and chromatin interaction analysis with paired-end tag databases. Multivariable Mendelian randomization assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. RESULTS: Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop, and that the genes therein belong to the same topologically associating domain. Chromatin immunoprecipitation followed by sequencing and chromatin interaction analysis with paired-end tag data analysis highlighted the presence of long-range interactions between the SEMA4A-promoter and PMF1-enhancer regions prioritized by association testing. Multivariable Mendelian randomization analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. INTERPRETATION: Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22, offering a potential new target for prevention of ICH and cerebral small vessel disease. ANN NEUROL 2024;95:325-337.


Subject(s)
Cerebral Small Vessel Diseases , Semaphorins , Stroke, Lacunar , Humans , Genome-Wide Association Study , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/complications , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , Stroke, Lacunar/complications , Chromatin , Semaphorins/genetics
2.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162822

ABSTRACT

Objective: Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases (CSVDs), including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. Methods: 95,000 base pairs spanning 1q22 , including SEMA4A, SLC25A44 and PMF1 / PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and RIFT analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, ChIP-Seq and ChIA-PET databases. Multivariable Mendelian randomization (MVMR) assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. Results: Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop and that the genes therein belong to the same Topologically Associating Domain. ChIP-Seq and ChIA-PET data analysis highlighted the presence of long-range interactions between the SEMA4A -promoter and PMF1 -enhancer regions prioritized by association testing. MVMR analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. Interpretation: Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22 , offering a potential new target for prevention of ICH and CSVD.

3.
Alzheimers Dement ; 19(11): 5173-5184, 2023 11.
Article in English | MEDLINE | ID: mdl-37166019

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is heterogeneous, both clinically and neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with transcriptome profiles from AD brains can explain AD clinical heterogeneity. METHODS: We conducted co-expression network analysis and identified gene sets (modules) that were preserved in three AD transcriptome datasets and associated with AD-related neuropathological traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module and tested associations with mbPRSs for cognitive test scores, cognitively defined AD subgroups, and brain imaging data. RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two modules (M6 and M9) showed distinct associations with language and visuospatial functioning, respectively. They matched clinical subtypes and brain atrophy at specific regions. DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed gene sets can explain heterogeneity in AD patients, enabling genetically informed patient stratification and precision medicine in AD. HIGHLIGHTS: Co-expression gene-network analysis in Alzheimer's disease (AD) brains identified gene sets (modules) associated with AD heterogeneity. AD-associated modules were selected when genes in each module were enriched for neuritic plaques and neurofibrillary tangles. Polygenic risk scores from two selected modules were linked to the matching cognitively defined AD subgroups (language and visuospatial subgroups). Polygenic risk scores from the two modules were associated with cognitive performance in language and visuospatial domains and the associations were confirmed in regional-specific brain atrophy data.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Transcriptome , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Brain/pathology , Risk Factors , Atrophy/pathology
4.
Stroke ; 54(4): 973-982, 2023 04.
Article in English | MEDLINE | ID: mdl-36799223

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) has an estimated heritability of 29%. We developed a genomic risk score for ICH and determined its predictive power in comparison to standard clinical risk factors. METHODS: We combined genome-wide association data from individuals of European ancestry for ICH and related traits in a meta-genomic risk score ([metaGRS]; 2.6 million variants). We tested associations with ICH and its predictive performance in addition to clinical risk factors in a held-out validation dataset (842 cases and 796 controls). We tested associations with risk of incident ICH in the population-based UK Biobank cohort (486 784 individuals, 1526 events, median follow-up 11.3 years). RESULTS: One SD increment in the metaGRS was significantly associated with 31% higher odds for ICH (95% CI, 1.16-1.48) in age-, sex- and clinical risk factor-adjusted models. The metaGRS identified individuals with almost 5-fold higher odds for ICH in the top score percentile (odds ratio, 4.83 [95% CI, 1.56-21.2]). Predictive models for ICH incorporating the metaGRS in addition to clinical predictors showed superior performance compared to the clinical risk factors alone (c-index, 0.695 versus 0.686). The metaGRS showed similar associations for lobar and nonlobar ICH, independent of the known APOE risk locus for lobar ICH. In the UK Biobank, the metaGRS was associated with higher risk of incident ICH (hazard ratio, 1.15 [95% CI, 1.09-1.21]). The associations were significant within both a relatively high-risk population of antithrombotic medications users, as well as among a relatively low-risk population with a good control of vascular risk factors and no use of anticoagulants. CONCLUSIONS: We developed and validated a genomic risk score that predicts lifetime risk of ICH beyond established clinical risk factors among individuals of European ancestry. Whether implementation of the score in risk prognostication models for high-risk populations, such as patients under antithrombotic treatment, could improve clinical decision making should be explored in future studies.


Subject(s)
Fibrinolytic Agents , Genome-Wide Association Study , Humans , Risk Factors , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/genetics , Genomics
5.
Acta Neuropathol ; 145(4): 395-408, 2023 04.
Article in English | MEDLINE | ID: mdl-36681782

ABSTRACT

Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.


Subject(s)
Chronic Traumatic Encephalopathy , Hippocampal Sclerosis , Neurodegenerative Diseases , TDP-43 Proteinopathies , Humans , Aged , Chronic Traumatic Encephalopathy/pathology , Aging , TDP-43 Proteinopathies/pathology , DNA-Binding Proteins/metabolism
6.
Int J Stroke ; 18(7): 804-811, 2023 08.
Article in English | MEDLINE | ID: mdl-36705426

ABSTRACT

BACKGROUND AND AIMS: Combining biologically related traits in genome-wide association studies (GWAS) increases the power for genetic discovery. Given the established relationship between lobar intracerebral hemorrhage (ICH) and cerebral amyloid angiopathy (CAA), and between the latter and levels of cerebrospinal fluid amyloid-ß 42 (CSF-Aß42), we leveraged genetic predisposition for lower CSF-Aß42 levels as a proxy phenotype for CAA to identify new genes associated with lobar ICH. METHODS: We used publicly available GWAS data for CSF-Aß42 levels (n = 3146) and for lobar ICH (n = 2094). First, we evaluated the association between lobar ICH risk and CSF-Aß42 in lobar ICH patients using a polygenic risk score (PRS) for CSF-Aß42. Next, we conducted multi-trait analysis of GWAS (MTAG) for pleiotropy analysis of lobar ICH and CSF-Aß42. MTAG results were further tested using Expression Quantitative Trait Locus and Differential Gene Expression Analyses. RESULTS: CSF-Aß42 PRS was associated with lobar ICH risk (p = 0.04). MTAG analysis identified a novel association within CDH9 (rs1007589; minor allele frequency = 0.09; MTAG p = 5.4 × 10-8; lobar ICH odds ratio = 1.4 and p = 2.4 × 10-3; CSF-Aß42 ß = -0.03 and p = 4.5 × 10-6). rs1007589 was significantly associated with the expression levels of CDH9 in temporal and occipital cortices, regions known to preferentially accumulate microhemorrhages in CAA. CONCLUSION: Our pleiotropy analysis suggested a variant possibly implicated with lobar ICH driven by amyloid-related mechanisms in CDH9 and associated with differential expression in brain regions characteristically affected by CAA. CDH9 is one subtype of the cadherin superfamily, which regulates intercellular adhesion, is involved in blood-brain barrier integrity, and is elevated in Alzheimer's disease patients. Further analyses are warranted to understand the effects of the variant on the pathogenesis of ICH and its clinical significance.


Subject(s)
Cerebral Amyloid Angiopathy , Stroke , Humans , Amyloid beta-Peptides/genetics , Genome-Wide Association Study , Stroke/complications , Cerebral Hemorrhage/complications , Brain/pathology , Cerebral Amyloid Angiopathy/complications , Magnetic Resonance Imaging
7.
JAMA Neurol ; 79(8): 787-796, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759276

ABSTRACT

Importance: Repetitive head impact (RHI) exposure is the chief risk factor for chronic traumatic encephalopathy (CTE). However, the occurrence and severity of CTE varies widely among those with similar RHI exposure. Limited evidence suggests that the APOEε4 allele may confer risk for CTE, but previous studies were small with limited scope. Objective: To test the association between APOE genotype and CTE neuropathology and related endophenotypes. Design, Setting, and Participants: This cross-sectional genetic association study analyzed brain donors from February 2008 to August 2019 from the Veterans Affairs-Boston University-Concussion Legacy Foundation Brain Bank. All donors had exposure to RHI from contact sports or military service. All eligible donors were included. Analysis took place between June 2020 and April 2022. Exposures: One or more APOEε4 or APOEε2 alleles. Main Outcomes and Measures: CTE neuropathological status, CTE stage (0-IV), semiquantitative phosphorylated tau (p-tau) burden in 11 brain regions (0-3), quantitative p-tau burden in the dorsolateral frontal lobe (log-transformed AT8+ pixel count per mm2), and dementia. Results: Of 364 consecutive brain donors (100% male; 53 [14.6%] self-identified as Black and 311 [85.4%] as White; median [IQR] age, 65 [47-77] years) 20 years or older, there were 294 individuals with CTE and 70 controls. Among donors older than 65 years, APOEε4 status was significantly associated with CTE stage (odds ratio [OR], 2.34 [95% CI, 1.30-4.20]; false discovery rate [FDR]-corrected P = .01) and quantitative p-tau burden in the dorsolateral frontal lobe (ß, 1.39 [95% CI, 0.83-1.94]; FDR-corrected P = 2.37 × 10-5). There was a nonsignificant association between APOEε4 status and dementia (OR, 2.64 [95% CI, 1.06-6.61]; FDR-corrected P = .08). Across 11 brain regions, significant associations were observed for semiquantitative p-tau burden in the frontal and parietal cortices, amygdala, and entorhinal cortex (OR range, 2.45-3.26). Among football players, the APOEε4 association size for CTE stage was similar to playing more than 7 years of football. Associations were significantly larger in the older half of the sample. There was no significant association for CTE status. Association sizes were similar when donors with an Alzheimer disease neuropathological diagnosis were excluded and were reduced but remained significant after adjusting for neuritic and diffuse amyloid plaques. No associations were observed for APOEε2 status. Models were adjusted for age at death and race. Conclusions and Relevance: APOEε4 may confer increased risk for CTE-related neuropathological and clinical outcomes among older individuals with RHI exposure. Further work is required to validate these findings in an independent sample.


Subject(s)
Alzheimer Disease , Brain Concussion , Chronic Traumatic Encephalopathy , Football , Aged , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Brain/pathology , Brain Concussion/complications , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/genetics , Cross-Sectional Studies , Genotype , Humans , Male , Middle Aged , tau Proteins/metabolism
8.
Alzheimers Dement ; 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35770850

ABSTRACT

INTRODUCTION: Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS: To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS: We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8 ) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14 ) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION: These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.

9.
Int J Stroke ; : 17474930221095696, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35403514

ABSTRACT

BACKGROUND AND AIMS: Increased risk of stroke, particularly large artery stroke (LAS), has been observed in patients with COVID-19. The biological processes underlying the observed higher risk are still unknown. We explored the association between stroke subtypes and COVID-19 susceptibility to understand whether biological mechanisms specific to SARS-CoV-2 uptake/infection could be leading to excess stroke risk in this population. PATIENTS AND METHODS: We constructed a polygenic risk score (PRS) of COVID-19 susceptibility and tested its association with stroke subtypes using individual- and summary-level genetic data (SiGN, MEGASTROKE). We generated co-expression networks of genes involved in SARS-CoV-2 uptake/infection (ACE2, TMPRSS2, BEST3, ISLR2 and ADAM17) based on existing tissue expression libraries. Gene-based association testing was performed using S-PrediXcan and VEGAS2. Permutation independence tests were performed to assess SARS-CoV-2-related gene enrichment in stroke and its subtypes. RESULTS: Our PRS demonstrated an association between COVID-19 susceptibility and LAS in SiGN (OR = 1.05 per SD increase, 95% CI: (1.00, 1.10), p = 0.04) and MEGASTROKE (ß = 0.510, 95% CI: (0.242, 0.779), FDR-p = 0.0019). The SARS-CoV-2 risk-related ISLR2 co-expression gene network was significantly associated with genetic risk of LAS in aorta, tibial arteries, and multiple brain regions (P < 0.05). CONCLUSION: Presence of genetic correlation and significant pathway enrichment suggest that increases in LAS risk reported in COVID-19 patients may be intrinsic to the viral infection, rather than a more generalized response to severe illness.

10.
Alzheimers Dement ; 18(11): 2042-2054, 2022 11.
Article in English | MEDLINE | ID: mdl-35142023

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ɛ2 allele reduces risk against Alzheimer's disease (AD) but mechanisms underlying this effect are largely unknown. METHODS: We conducted a genome-wide association study for AD among 2096 ɛ2 carriers. The potential role of the top-ranked gene and complement 4 (C4) proteins, which were previously linked to AD in ɛ2 carriers, was investigated using human isogenic APOE allele-specific induced pluripotent stem cell (iPSC)-derived neurons and astrocytes and in 224 neuropathologically examined human brains. RESULTS: PPP2CB rs117296832 was the second most significantly associated single nucleotide polymorphism among ɛ2 carriers (P = 1.1 × 10-7 ) and the AD risk allele increased PPP2CB expression in blood (P = 6.6 × 10-27 ). PPP2CB expression was correlated with phosphorylated tau231/total tau ratio (P = .01) and expression of C4 protein subunits C4A/B (P = 2.0 × 10-4 ) in the iPSCs. PPP2CB (subunit of protein phosphatase 2A) and C4b protein levels were correlated in brain (P = 3.3 × 10-7 ). DISCUSSION: PP2A may be linked to classical complement activation leading to AD-related tau pathology.


Subject(s)
Alzheimer Disease , Humans , Apolipoprotein E2/genetics , Alzheimer Disease/pathology , Protein Phosphatase 2/genetics , Genome-Wide Association Study , Apolipoproteins E/genetics , Complement C4/genetics , Apolipoprotein E4/genetics , tau Proteins/genetics
11.
Stroke ; 53(3): 875-885, 2022 03.
Article in English | MEDLINE | ID: mdl-34727735

ABSTRACT

BACKGROUND AND PURPOSE: Stroke is the leading cause of death and long-term disability worldwide. Previous genome-wide association studies identified 51 loci associated with stroke (mostly ischemic) and its subtypes among predominantly European populations. Using whole-genome sequencing in ancestrally diverse populations from the Trans-Omics for Precision Medicine (TOPMed) Program, we aimed to identify novel variants, especially low-frequency or ancestry-specific variants, associated with all stroke, ischemic stroke and its subtypes (large artery, cardioembolic, and small vessel), and hemorrhagic stroke and its subtypes (intracerebral and subarachnoid). METHODS: Whole-genome sequencing data were available for 6833 stroke cases and 27 116 controls, including 22 315 European, 7877 Black, 2616 Hispanic/Latino, 850 Asian, 54 Native American, and 237 other ancestry participants. In TOPMed, we performed single variant association analysis examining 40 million common variants and aggregated association analysis focusing on rare variants. We also combined TOPMed European populations with over 28 000 additional European participants from the UK BioBank genome-wide array data through meta-analysis. RESULTS: In the single variant association analysis in TOPMed, we identified one novel locus 13q33 for large artery at whole-genome-wide significance (P<5.00×10-9) and 4 novel loci at genome-wide significance (P<5.00×10-8), all of which need confirmation in independent studies. Lead variants in all 5 loci are low-frequency but are more common in non-European populations. An aggregation of synonymous rare variants within the gene C6orf26 demonstrated suggestive evidence of association for hemorrhagic stroke (P<3.11×10-6). By meta-analyzing European ancestry samples in TOPMed and UK BioBank, we replicated several previously reported stroke loci including PITX2, HDAC9, ZFHX3, and LRCH1. CONCLUSIONS: We represent the first association analysis for stroke and its subtypes using whole-genome sequencing data from ancestrally diverse populations. While our findings suggest the potential benefits of combining whole-genome sequencing data with populations of diverse genetic backgrounds to identify possible low-frequency or ancestry-specific variants, they also highlight the need to increase genome coverage and sample sizes.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Precision Medicine , Racial Groups/genetics , Stroke/genetics , Aged , Aged, 80 and over , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Whole Genome Sequencing
12.
Nat Biomed Eng ; 6(6): 771-786, 2022 06.
Article in English | MEDLINE | ID: mdl-34824397

ABSTRACT

The use of rodents to acquire understanding of the function of neural circuits and of the physiological, genetic and developmental underpinnings of behaviour has been constrained by limitations in the scalability, automation and high-throughput operation of implanted wireless neural devices. Here we report scalable and modular hardware and software infrastructure for setting up and operating remotely programmable miniaturized wireless networks leveraging Bluetooth Low Energy for the study of the long-term behaviour of large groups of rodents. The integrated system allows for automated, scheduled and real-time experimentation via the simultaneous and independent use of multiple neural devices and equipment within and across laboratories. By measuring the locomotion, feeding, arousal and social behaviours of groups of mice or rats, we show that the system allows for bidirectional data transfer from readily available hardware, and that it can be used with programmable pharmacological or optogenetic stimulation. Scalable and modular wireless-network infrastructure should facilitate the remote operation of fully automated large-scale and long-term closed-loop experiments for the study of neural circuits and animal behaviour.


Subject(s)
Neurosciences , Wireless Technology , Animals , Behavior, Animal , Mice , Optogenetics , Prostheses and Implants , Rats
13.
Life (Basel) ; 13(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36676067

ABSTRACT

The purpose of this study is to characterize the inflammatory cytokine profile in rhegmatogenous retinal detachments (RRDs) compared to surgical controls. Vitreous humor was collected from patients undergoing vitrectomy for RRD and noninflammatory vitreoretinal diseases. A quantitative immunoassay was used to measure the levels of 36 cytokine markers. Linear regression analysis with the duration of detachment as the predictor and log-transformed cytokine levels as the outcome was conducted for normally distributed cytokines as determined by the Shapiro-Wilk test. The analysis was adjusted for age, sex, and race. The Kruskal-Wallis test was used for cytokines not normally distributed. Twenty-seven RRD cases and thirteen control cases were studied. Between all RRDs and controls, fibroblast growth factor 2 (FGF2) (p = 0.0029), inducible protein-10(IP-10) (p = 0.0021), monocyte chemoattractant protein-1 (MCP-1) (p = 0.0040), interleukin (IL)-16 (p = 0.018), IL-8 (p = 0.0148), IL-6 (p = 0.0071), eotaxin (p = 0.0323), macrophage inflammatory protein (MIP)-1 alpha (p = 0.0149), MIP-1 beta (p = 0.0032), and the thymus and activation regulated cytokine (TARC) (p = 0.0121) were elevated in RRD cases. Between acute RRDs (n = 16) and controls, FGF2 (p = 0.0001), IP10 (p = 0.0027), MCP-1 (p = 0.0015), MIP-1ß (p = 0.0004), IL-8 (p = 0.0146), and IL-6 (p = 0.0031) were elevated. Determining alterations in inflammatory cytokine profiles may aid in understanding their impact on RRD development, clinical course, and complications before and after surgical repair.

14.
J Clin Med ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36614910

ABSTRACT

Age-related macular degeneration (AMD) has been implicated as a risk factor for severe consequences from COVID-19. We evaluated the genetic architecture shared between AMD and COVID-19 (critical illness, hospitalization, and infections) using analyses of genetic correlations and pleiotropy (i.e., cross-phenotype meta-analysis) of AMD (n = 33,976) and COVID-19 (n ≥ 1,388,342) and subsequent analyses including expression quantitative trait locus (eQTL), differential gene expression, and Mendelian randomization (MR). We observed a significant genetic correlation between AMD and COVID-19 infection (rG = 0.10, p = 0.02) and identified novel genome-wide significant associations near PDGFB (best SNP: rs130651; p = 2.4 × 10-8) in the pleiotropy analysis of the two diseases. The disease-risk allele of rs130651 was significantly associated with increased gene expression levels of PDGFB in multiple tissues (best eQTL p = 1.8 × 10-11 in whole blood) and immune cells (best eQTL p = 7.1 × 10-20 in T-cells). PDGFB expression was observed to be higher in AMD cases than AMD controls {fold change (FC) = 1.02; p = 0.067}, as well as in the peak COVID-19 symptom stage (11-20 days after the symptom onset) compared to early/progressive stage (0-10 days) among COVID-19 patients over age 40 (FC = 2.17; p = 0.03) and age 50 (FC = 2.15; p = 0.04). Our MR analysis found that the liability of AMD risk derived from complement system dysfunction {OR (95% CI); hospitalization = 1.02 (1.01-1.03), infection = 1.02 (1.01-1.03) and increased levels of serum cytokine PDGF-BB {ß (95% CI); critical illness = 0.07 (0.02-0.11)} are significantly associated with COVID-19 outcomes. Our study demonstrated that the liability of AMD is associated with an increased risk of COVID-19, and PDGFB may be responsible for the severe COVID-19 outcomes among AMD patients.

15.
Mol Psychiatry ; 26(10): 6054-6064, 2021 10.
Article in English | MEDLINE | ID: mdl-34480088

ABSTRACT

Mechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer disease (AD) are not well understood. We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE ɛ2/ɛ3 carriers. Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between ɛ2/ɛ3 AD cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-ß 42 level, suggesting this APOE ɛ2 related co-expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte-specific and significantly associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective effect of APOE ε2 for AD.


Subject(s)
Alzheimer Disease , Apolipoprotein E2 , Complement C4 , HSP70 Heat-Shock Proteins , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Brain , Complement C4/genetics , Gene Expression Profiling , Genotype , HSP70 Heat-Shock Proteins/genetics , Humans
16.
Neurology ; 2021 May 24.
Article in English | MEDLINE | ID: mdl-34031201

ABSTRACT

ObjectiveTo test the genetic contribution of rare missense variants in COL4A1 and COL4A2 in which common variants are genetically associated with sporadic intracerebral hemorrhage (ICH), we performed rare variant analysis in multiple sequencing data for the risk for sporadic ICH.MethodsWe performed sequencing across 559Kbp at 13q34 including COL4A1 and COL4A2 among 2,133 individuals (1,055 ICH cases; 1,078 controls) in US-based and 1,492 individuals (192 ICH cases; 1,189 controls) from Scotland-based cohorts, followed by sequence annotation, functional impact prediction, genetic association testing, and in silico thermodynamic modeling.ResultsWe identified 107 rare nonsynonymous variants in sporadic ICH, of which two missense variants, rs138269346 (COL4A1I110T) and rs201716258 (COL4A2H203L), were predicted to be highly functional and occurred in multiple ICH cases but not in controls from the US-based cohort. The minor allele of rs201716258 was also present in Scottish ICH patients, and rs138269346 was observed in two ICH-free controls with a history of hypertension and myocardial infarction. Rs138269346 was nominally associated with non-lobar ICH risk (P=0.05), but not with lobar ICH (P=0.08), while associations between rs201716258 and ICH subtypes were non-significant (P>0.12). Both variants were considered pathogenic based on minor allele frequency (<0.00035 in EUR), predicted functional impact (deleterious or probably damaging), and in silico modeling studies (substantially altered physical length and thermal stability of collagen).ConclusionsWe identified rare missense variants in COL4A1/A2 in association with sporadic ICH. Our annotation and simulation studies suggest that these variants are highly functional and may represent targets for translational follow-up.

17.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946446

ABSTRACT

In this study, we compare the vitreous cytokine profile in patients with proliferative diabetic retinopathy (PDR) to that of patients without PDR. The identification of novel cytokines involved in the pathogenesis of PDR provides candidate therapeutic targets that may stand alone or work synergistically with current therapies in the management of diabetic retinopathy. Undiluted vitreous humor specimens were collected from 74 patients undergoing vitrectomy for various vitreoretinal disorders. Quantitative immunoassay was performed for a panel of 36 neuroinflammatory cytokines in each specimen and assessed to identify differences between PDR (n = 35) and non-PDR (n = 39) patients. Levels of interleukin-8 (IL-8), IL-15, IL-16, vascular endothelial growth factor (VEGF), VEGF-D, c-reactive protein (CRP), serum amyloid-A (SAA), and intracellular adhesion molecule-1 (ICAM1) were significantly increased in the vitreous of PDR patients compared to non-PDR patients (p < 0.05). We report novel increases in IL-15 and IL-16, in addition to the expected VEGF, in the human vitreous humor of patients with PDR. Additionally, we confirm the elevation of ICAM-1, VCAM-1, SAA, IL-8 and CRP in the vitreous of patients with PDR, which has previously been described.


Subject(s)
Diabetic Retinopathy/metabolism , Interleukins/metabolism , Vitreous Body/metabolism , C-Reactive Protein/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Male , Middle Aged , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism
18.
Transl Psychiatry ; 11(1): 250, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907181

ABSTRACT

Because regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1 Mb of genes was evaluated using linear regression models for unrelated subjects and linear-mixed models for related subjects. Cell-type-specific eQTL (ct-eQTL) models included an interaction term for the expression of "proxy" genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell types is supported by the observation that a large portion of GWS ct-eQTLs map within 1 Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type-specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type-specific analysis.


Subject(s)
Alzheimer Disease , Quantitative Trait Loci , Alzheimer Disease/genetics , Brain , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
19.
JAMA Neurol ; 78(1): 102-113, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33074286

ABSTRACT

Importance: Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective: To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, Setting, and Participants: This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main Outcomes and Measures: Diagnosis of Alzheimer disease. Results: A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain ß-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and Relevance: While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.


Subject(s)
Alzheimer Disease/genetics , Black or African American/genetics , Genetic Predisposition to Disease/genetics , Aged , Female , Genetic Loci , Genome-Wide Association Study , Humans , Male , Middle Aged
20.
Commun Biol ; 3(1): 755, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311586

ABSTRACT

Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10-16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10-19), TMPRSS5 (rs4936279, P = 2.5 × 10-10), LINC01412 (rs16823886, P = 1.3 × 10-9), GLTSCR1 (rs1005911, P = 9.8 × 10-9), and COMMD1 (rs62149908, P = 1.2 × 10-8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


Subject(s)
Cataract/etiology , Genetic Predisposition to Disease , Genetic Variation , SOXB1 Transcription Factors/genetics , Alleles , Cataract/diagnosis , Genetic Association Studies , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...